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ABSTRACT Random mutations under neutral or near-
neutral conditions are studied by considering plausible evo-
lutionary trajectories on ‘‘neutral nets’’—i.e., collections of
sequences (genotypes) interconnected via single-point muta-
tions encoding for the same ground-state structure (pheno-
type). We use simple exact lattice models for the mapping
between sequence and conformational spaces. Densities of
states based on model intrachain interactions are determined
by exhaustive conformational enumeration. We compare re-
sults from two very different interaction schemes to ascertain
robustness of the conclusions. In both models, sequences in a
majority of neutral nets center around a single ‘‘prototype
sequence’’ of maximum mutational stability, tolerating the
largest number of neutral mutations. General analytical con-
siderations show that these topologies by themselves lead to
higher steady-state evolutionary populations at prototype
sequences. On average, native thermodynamic stability in-
creases toward a maximum at the prototype sequence, result-
ing in funnel-like arrangements of native stabilities in se-
quence space. These observations offer a unified perspective
on sequence design, native stability, and mutational stability
of proteins. These principles are generalizable from native
stability to any measure of fitness provided that its variation
with respect to mutations is essentially smooth.

The study of evolution requires an understanding of how
sequences are mapped onto structures and functions. Fitness
landscape is a useful conceptualization of sequence-space
properties. It was originally proposed almost 70 years ago by
Sewall Wright (1), who envisioned evolution as walks of
populations on this landscape toward higher fitness.

Many evolutionary questions, such as those pertinent to
random genetic drift as advocated by Motoo Kimura (2), entail
modeling broad areas of the fitness landscape. Analytical
models often assume a random mapping between genotype
and phenotype, because the correlation among mutational
effects proves to be mathematically complex to account for (3).
However, such correlations are crucial in understanding neu-
tral mutations and mutational stability. To address these
issues, many recent theoretical efforts have been computa-
tional, focusing on constructing models of sequence-structure
mapping for RNA (4–7) and proteins (8–22) that are moti-
vated by various aspects of polymer physics. Because of the
immense sizes of the systems, all these models involve signif-
icant simplifications (23–25). One of these models (8, 9) has
been applied (10) to explore whether nonlethal mutations
form a connected network, as envisioned by Maynard Smith
(26).

Many proteins maintain their native structures while under-
going single and double mutations at many different sites. Of
considerable evolutionary interest, therefore, is the number of
converging sequences encoding for the same structure (9, 14,
16, 21). In a recent insightful study, Li et al. found that
structures differ markedly in terms of their designability, i.e.,
their numbers of converging sequences, and that there are a
small number of highly designable sequences (14).

Using a hydrophobic polar (HP) model with exhaustive
conformational enumeration in two dimensions, one of us (16)
recently obtained results consistent with that of Li et al. (17),
including a Zipf-like distribution of designability. In addition,
neutral nets are found to be centered around prototype
sequences (16).

Another line of inquiry, beginning with the work of Bryn-
gelson and Wolynes (27), has emphasized the importance of
kinetic accessibility of the native structures as an evolutionary
selection criterion. In this view, preferred structures are those
that can be encoded by sequences with high native stabilities
and minimal ruggedness on the folding landscape to allow for
fast folding (13, 18–23). Structures preferred by the kinetic
criterion are expected to be highly designable by the thermo-
dynamic criterion of Li et al., because they observed that high
native stability is likely to correlate with high designability
(14, 22).

Building on these results, we now turn our attention to
sequence-space topologies of neutral nets (5, 16, 18), i.e., how
sequences encoding for the same structure are related to one
another by mutations. We observe the following features: (i)
Independent of functional fitness, topology per se can lead to
concentration of evolutionary population at some sequences.
This perspective may rationalize certain mutagenesis experi-
ments. (ii) The organization of native stabilities is funnel like
among certain sets of sequences encoding for the same native
structure. (iii) The presence of repulsive interactions can lead
to more rugged sequence-space landscape.

Thermodynamic stability of the native structure is treated
here as one possible ‘‘fitness’’ measure. Locally optimal se-
quences have previously been pictured as ‘‘peaks’’ (3) on the
fitness landscape. Here we choose to conform to conventional
imageries in physics and physical chemistry; we associate
higher fitness with lower altitude on sequence-space land-
scapes instead. In this picture, neutral nets often are basins of
attraction, with prototype sequences at their bottom.

MODELS OF NEUTRAL MUTATIONS
We study two models; both admit all possible permutations of
two types of monomers along chain sequences, and chain
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conformations are configured on two-dimensional square lat-
tices. We first consider the HP model (28), which assigns a
favorable contact energy % (,0) for each contact between two
H monomers (an HH contact), whereas hydrophobic-polar
(HP) and polar-polar (PP) contacts are neutral (zero contact
energy). For comparison, we study also the ‘‘AB’’ model (29),
with monomer types A and B. The contact energies for AA,
BB, and AB contacts are, respectively %, % (,0), and 2% (.0).
The HP model is motivated by the physics of hydrophobic
interactions. Native conformations in the HP model tend to
have a hydrophobic core and a mostly polar surface, as in real
proteins. On the other hand, the interactions in the AB model
are very different; like monomers attract and unlike monomers
repel. Hence the two types of monomers tend to segregate in
native conformations, with mostly A monomers on one side
and mostly B monomers on the other, which is not very protein
like. The AB model is used here as a control, and also as a
means to address effects of repulsive interactions and more
disruptive mutations (29). Results below are presented for
chain length n 5 18.

For each of 218 possible sequences in both models, exhaus-
tive enumeration is used to identify the ground-state (lowest-
energy) conformations among all 5,808,335 possibilities. There
are, respectively, 6,349 and 34,700 sequences in the HP and AB
models with a unique ground-state (native) conformation.
They are used as model proteins (29). All single-point muta-
tions (8, 11) among these sequences are determined. There are
16,340 such H 7 P mutations (12) and 121,472 such A 7 B
mutations.

A neutral net is defined as a collection of unique sequence(s)
encoding for the same native structure that are interconnected
by single-point mutations. There are 1,706 and 16,270 neutral
nets of various sizes in the HP and AB models, respectively.
Fig. 1 shows the largest neutral nets. The Hamming distance
between two sequences is the total number of monomers that
are different along the alignment of the two sequences (16).
Sequences within a neutral net that differ by only a single-point
mutation (i.e., Hamming distance of one) are called neutral
neighbors.

Most neutral nets center around prototype sequences (16)
with the maximum number of neutral neighbors (Fig. 1).
Motivated by their suggestive topologies, we first ask whether
network connectivity alone can give rise to enhanced popula-
tions at the prototype sequences, based on an extremely simple
model of evolutionary dynamics: for a neutral net with v
sequences, let the population of the ith sequence be Pi (i 5 1,
2, . . . , v), and the mutation rate m is the same for each of the
n monomers. A mutation resulting in a sequence outside the
neutral net is taken as lethal, corresponding to a population
loss. Neglecting population entering the neutral net from the
outside,

dPi

dt
5 2 mnPi 1 mO

j51

Ai

Pni~j! [1]

gives the time (t) dependence of the system, where ni(j)’s label
the Ai neutral neighbors of i. We note that the overall absolute
population can increase or decrease depending on whether the
reproductive rate [an additional term proportional to Pi in Eq.
1] is sufficient to offset losses to lethal mutations. However,
this does not affect the steady-state relative population distri-
bution, which is determined by the expected large-t behavior,
dPiy(dt) 5 2ml9Pi, where l9 is some constant to be deter-
mined. Here m can be factored out because the overall
population decay rate in Eq. 1 must be proportional to the
mutational rate. It follows that the m-independent steady-state
relative population distribution is given by the eigenvector for
the largest l in the eigenvalue problem

O
j51

Ai

Pni~j! 5 lPi, i 5 1, 2, . . . , v, [2]

where l [ (n 2 l9). It is straightforward to see that this leads
to enhanced population at prototype sequences. If all v
populations are equal initially, mutations within the neutral
net would not at first contribute to population change, because
population flux from forward and backward mutations cancel.
In this case, those sequences with fewer neutral neighbors will
lose population faster because of their higher probabilities for
lethal mutations. It follows that population distribution would
shift subsequently in favor of sequences with more neutral
neighbors.

For a more quantitative illustration, consider a hypothetical
neutral net with perfect symmetry, which has two circles of
sequences surrounding a single prototype sequence at the
center. The prototype sequence has A0 neutral neighbors.
The A0 sequences in the first circle each has A1 neutral
neighbors; they are also connected to a second circle of
sequences, each of which has A2 neutral neighbors. It can be
shown that the ratios of steady-state populations between that
of the prototype sequence (P0) and one single sequence in the
first (P1) and the second (P2) circles are given by (P0yP1) 5
A0yÎA0 1 A2~A1 2 1! and ~P1yP2! 5 ÎA0 1 A2~A1 2 1!yA2.

FIG. 1. Largest neutral net in (a) the HP model (48 sequences) and
(b) AB model (26 sequences). The native structures are given in their
respective prototype sequences. H, P, A, and B monomers are
represented by filled and open circles and filled and open squares,
respectively (29). The topology of each neutral net is shown by
representing each sequence by a dot. A connecting line with arrow
indicates that two sequences are neutral neighbors (16). Arrows point
toward the sequence with higher native stability (see Fig. 2). Larger
dots represent sequences with the maximum number of neutral
neighbors within the neutral net. Concentric circles in dotted lines
indicate Hamming distance from the prototype sequence.
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For the special case of a symmetric neutral net with only one circle
(A1 5 1, A2 5 0), these results reduce to ~P0yP1! 5 ÎA0,
suggesting that in general steady-state population scales
roughly as the square root of a sequence’s number of neutral
neighbors A.

For neutral nets in Fig. 1, steady-state populations are
determined numerically. In both cases they peak at prototype
sequences, with 6.31% for the HP and 7.09% for the AB
neutral nets shown. In Fig. 1, the HP prototype sequence has
10 neutral neighbors; as for the rest, the highest and lowest
steady-state populations are 4.07% and 0.97% for a sequence
with 7 and 3 neutral neighbors, respectively. In the same figure,
the AB prototype sequence has six neutral neighbors. Two
other sequences have the same number of neutral neighbors;
their steady-state populations are 6.91% and 6.89%. The
lowest steady-state population is 1.04% for a sequence with
two neutral neighbors.

These variations among steady-state populations are mod-
est. This is a result of their roughly ' O~ÎA! dependence. For
sequences with two types of monomers, the maximum A is
equal to the chain length n, whereas n is small for our highly
simplified short-chain models. However, this general formu-
lation suggests that the steady-state population distribution
can be much more uneven and possibly highly peaked at
prototype sequences for real proteins made up of 20 amino
acid types with chain lengths n ' 100, because A can then be
of the order 19n.

In this simple model of evolutionary dynamics, the fitness
measure is effectively a step function—a constant favorable
fitness for every sequence in the neutral net and lethal outside,
and an effectively infinite population size is assumed. Realis-
tically, other factors such as native stability (see below) and
genetic drift because of finite population (30) are likely to skew
this simple picture. The most important observation here,
however, is that even with just the simple ingredients of neutral
net topology and the existence of lethal mutants, uneven
distributions that peak at prototype sequences can naturally
arise, and this feature should be general because its derivation
does not depend on any particular chain model.

FUNNELS IN SEQUENCE SPACE

In the present analysis, sequences within a neutral net are
neutral only with respect to their ability to encode for the same
native structure. We now consider the different thermody-
namic stabilities of the native structure they encode. For each
sequence, we enumerate the distribution of conformations
over all possible energetic states. The density of states g(E) is
the number of conformations with energy E, where E is the
sum of intrachain contact energies. The free energy of folding
to one of the ground-state conformations is given by (9, 11)

DG 5 EN 1 kBT ln@$g~EN! 2 1%e2ENy~kBT!

1 O
E.EN

g~E!e2E/~kBT!#, [3]

where kBT is Boltzmann constant times absolute temperature,
EN is the ground-state energy, and g(EN) 5 1 for the unique
sequences considered in this section. A more negative DG
means a more stable native structure. Here we use the
‘‘sticking’’ parameter 2%y(kBT) at the folding-denaturation
midpoint (DG 5 0) as stability measure. In some neutral nets,
there is more than one sequence with the maximum number
of neutral neighbors. We then define the prototype sequence
to be the one that also has the highest native stability.

Fig. 2 shows examples in which the most thermodynamically
stable sequence is also the prototype sequence. A striking
feature, especially for the HP case, is the funnel-like arrange-
ments of the neutral-neighbor connections, which are the

‘‘kinetic adjacencies’’ (12) in evolution. On average, native
stability decreases for sequences further away from the pro-
totype sequence (Fig. 2 c and d). This appears to be a general
feature of sequence space, irrespective of whether native
stability per se is favored by evolutionary selection. Because
each sequence is itself associated with a presumably funnel-like
folding landscape consisting of all conformations (23, 24, 31),
sequence-space funnels represent a higher level of organiza-
tion in a ‘‘cross product’’ of the sequence and conformational
spaces, while sharing qualitatively similar features with con-
formational-space funnels (31). Hence we propose adding the

FIG. 2. Native stabilities of the sequences in the (a) HP and (b) AB
neutral nets in Fig. 1 are represented as horizontal lines. The hori-
zontal axis indicates Hamming distance from the prototype sequence.
Neutral mutations are indicated by lines connecting horizontal levels.
Heuristic views of (c) the HP and (d) AB ‘‘superfunnels’’ are traces
through average stabilities of the sequences as a function of Hamming
distance (dots). In c and d, the bottom at the center of each funnel
corresponds to the prototype sequence; horizontal displacement from
the center in either direction corresponds to increasing Hamming
distance from the prototype sequence.
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prefix ‘‘super’’ to their description. We demonstrated above
that prototype sequences are intrinsically favored even in the
absence of any functional or reproductive advantage. If higher
native stability is correlated with enhanced fitness, which may
be a reasonable assumption for some biological activities, the
existence of superfunnels in sequence space would imply an
even higher concentration of steady-state evolutionary popu-
lations at the prototype sequences.

Thermodynamic statistics of all neutral nets in the two
models are given in Figs. 3 and 4 as functions of neutral net

size. Figs. 3 (Lower) and 4 (Lower) show that a majority of
neutral nets conform to the superfunnel paradigm. There are
exceptions: in some neutral nets, sequences with the maximum
number of neutral neighbors do not have the highest thermo-
dynamic stability (see Dmin traces). These cases constitute only
a minority. In the HP model, this occurs in 75 neutral nets,
which comprise 11.2% of the 668 neutral nets with more than
two sequences. Collectively, they contain 748 sequences, which
is 11.8% of all unique sequences. In the AB model, 1,348
neutral nets do not conform to the superfunnel paradigm,
which is 35.5% of the 3,882 nets with more than two sequences,
and they involve 6,484 sequences, 18.7% of all unique se-
quences. In these situations, the dominant population would be
determined by two competing evolutionary effects—the se-
lective advantage of native thermodynamic stability vs. the
neutral net topology effect described above.

For the majority of neutral nets that are superfunnels, there
is a clear correlation between neutral net size and the stability
of the prototype sequence (Figs. 3 and 4 Upper). This obser-
vation is consistent with the conclusions of Li et al. (14) and
Melin et al. (22) on proteins and of Wuchty et al. (7) on RNA.
This can also be seen here from the fact that, on average, the
depth of superfunnels increases with size (Figs. 3 and 4 Lower,
^D& traces). The average slope of superfunnels ^d%&, however,
does not show any significant systematic increase or decrease
with size.

These general trends are observed in both the HP and AB
models, but details of the superfunnels depend on the intra-
chain interactions of the sequences. Because of the repulsive
interactions, mutations in the AB model are more disruptive.
As a result, the AB sequence space is more fragmented, and

FIG. 3. Superfunnel geometry. (Upper) Thermodynamic stability
of prototype sequences. For neutral nets of a given size, diamond
shows the average stability, whereas dots show the maximum and
minimum stabilities among the prototype sequences from different
neutral nets. (Inset) 1 (v) is the number of neutral nets with size v.
All solid or dashed lines linking data points in Figs. 3 and 4 serve
merely as visual guides. (Lower) For a given neutral net, D is the
difference in thermodynamic stability [measured in transition-
midpoint 2%y(kBT)] between a nonprototype sequence and the
prototype sequence. The average stability gap ^D& is the average of D
over all nonprototype sequences in the net; thus it provides a measure
of ‘‘depth’’ of a neutral net. The minimum stability gap Dmin is the
smallest value of D within a neutral net. Hence Dmin , 0 implies the
neutral net is not a superfunnel. Averages of ^D& (squares) and Dmin
(circles) over neutral nets of given sizes are plotted. For neutral nets
that satisfy the superfunnel criterion (Dmin $ 0), average slopes are
also computed. For every neutral mutation, d% is a sequence-space
slope. It is equal to the transition-midpoint 2%y(kBT) of the sequence
one Hamming step further from the prototype sequence minus that of
its neutral neighbor that is one step closer. ^d%& is the average of d%
over all mutations within a neutral net. Because some neutral muta-
tions lead to negative slopes (d% , 0), we also compute the average
of their absolute values, ^ud%u&. Averages of these two quantities over
neutral nets of given sizes are plotted as dots connected by solid (^d%&)
and dashed (^ud%u&) lines.

FIG. 4. Same as Fig. 3 except for AB sequences.
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its neutral nets are on average smaller than that in the HP
sequence space (Figs. 3 and 4 Upper). The largest HP neutral
net coincides with the largest set (neutral set) of converging
sequences (9, 16) encoding for the same structure. For the AB
model, the structure encoded by the largest neutral net is not
identical to that with the largest neutral set. The latter has 76
encoding sequences, but it is fragmented into 14 neutral nets.

HP superfunnels are also smoother. For instance, 98 of the
99 mutational connections in the largest HP neutral net in Figs.
1 and 2 have ‘‘positive slopes,’’ i.e., they are directed toward
sequences with higher stabilities as they approach the proto-
type sequence. Only one mutational connection has a ‘‘nega-
tive slope.’’ There is no evolutionary ‘‘kinetic trap’’ on this HP
superfunnel, because every nonprototype sequence has at least
one neutral neighbor with higher thermodynamic stability
[smaller 2%y(kBT) at DG 5 0]. The AB neutral net in the same
figures are more rugged in that 9 of the 46 mutational
connections have negative slopes. The heuristic drawing in Fig.
2d also suggests that there are evolutionary ‘‘kinetic traps’’ in
this AB neutral net. Indeed, there is one trap at Hamming
distance 4, but it is very shallow. AB superfunnels are more
rugged in general. This is illustrated by the much larger
discrepancies between the ^d%& and ^ud%u& traces in Fig. 4
(Lower) vs. that in Fig. 3; ^ud%u& 2 ^d%& describes the prevalence
of negative slopes and is therefore a measure of superfunnel
ruggedness.

MULTIPLY-DEGENERATE SEQUENCES

So far, we have assumed that only unique sequences are viable.
However, it is conceivable that a sequence with more than one
ground-state conformation [i.e., degeneracy g [ g(EN) . 1]
(29) can still possess the function performed by any one of its
ground-state conformations. As a first approximation, we may
assume that the activity specific to a given conformation is
proportional to the fractional population p of that conforma-
tion. Its free energy of folding DG 5 2kBT ln[py(12p)] at a
given intrachain sticking can then be used to characterize this
activity. A smaller DG implies a higher stability for the

functional form. DG is calculated from the sequence’s density
of state by using Eq. 3. Because multiply-degenerate (g . 1)
sequences can never attain more than p 5 50% population for
any one of its g ground-state conformations, their DGs are
always positive.

By including sequences with as many as six ground-state
conformations, an extended HP neutral net for the one in Figs.
1 and 2a is constructed (Fig. 5). Every g . 1 sequence in this
net has the HP structure in Fig. 1 as one of its ground-state
conformations. Fig. 5 provides these sequences’ free energies
of folding to this structure, resulting in a larger superfunnel
with the same general features as that in Fig. 2a. The maximum
Hamming distance remains unchanged. On average, the g . 1
sequences are further away from the prototype sequence than
the unique (g 5 1) sequences (average Hamming distance of
2.6 vs. 2.1).

These observations suggest a generalization of the super-
funnel concept. Basins of attraction in sequence space can be
substantially enlarged to encompass more sequences if multi-
ply-degenerate sequences are to some degree viable. In this
scenario, some of the g . 1 sequences that have other
encodable conformation(s) (29) in their ground states can
serve as ‘‘switches’’ (16) to facilitate evolution to other neutral
nets. In Fig. 5, 13 of the g 5 2 sequences share this property.

GENERALIZATIONS AND DISCUSSION

Our model results strongly suggest that ‘‘plasticity’’ or muta-
tional stability of a sequence is correlated with its thermody-
namic stability. We believe that this general conclusion follows
directly from a fundamental principle of sequence design—
that it is important to both design in the target structure and
design out nontarget structures (32). Thus native states of
better designed sequences are energetically more separated
from their nonnative conformations, implying that they have
higher thermodynamic stabilities (14, 22). Some threshold
native stability may also be needed to avoid misfolding on
multimerization and aggregation (33). Insofar as stability of a
given native structure varies relatively smoothly in sequence
space, a superfunnel-like organization is likely. In evolutionary
terms, this means that in most cases the wild-type sequence
may be identified with the prototype sequence, and that most
if not all single-point mutations on the wild-type sequence
would be thermodynamically destabilizing. In light of these
considerations, the generality of our conclusion may transcend
the two models studied here, and may also be independent of
questions regarding what model contact interactions and chain
representations are more protein like (21, 29).

Following this logic, it appears that any fitness measure
could lead to superfunnel-like organizations of that measure,
provided that its variation is relatively smooth in sequence
space. Several recent evolutionary studies are based on as-
sumed selective advantages for sequences having fast folding
kinetics in addition to thermodynamically stable native struc-
tures (13, 18–22). We note that mutational effects on model
folding kinetics can sometimes be subtle (12, 34), and actual
dynamic simulations have shown that some kinetic properties
cannot always be reliably derived from the density of states
alone (35) as used in some studies (18, 21). A recent experi-
ment also shows that mutations on wild type are most likely
destabilizing, but their kinetic effects are less predictable (36).
Nevertheless, inasmuch as these ‘‘foldability’’ criteria do vary
smoothly (18), superfunnel-like organization of foldability is
expected. Indeed, a funnel-like variation of a ‘‘frustration’’
measure of kinetic accessibility along a sequence similarity
parameter has recently been reported in an off-lattice study by
Nelson and Onuchic (20).

Our goal here is to establish a conceptual framework. Many
subtleties and complexities of biological structure and function
(37) are neglected. For instance, it has been suggested that too

FIG. 5. Extended neutral net for the HP structure in Fig. 1, with 146
sequences. Same as Fig. 2a, except that native stabilities of the
sequences are now measured by free energy of folding (Eq. 3) and that
multiply-degenerate sequences (degeneracy g # 6) are included.
Numbers of sequences with g 5 1, 2, 3, 4, 5, and 6 in this net are 48,
22, 16, 27, 14, and 19, respectively. The vertical bars and numbers on
the right indicate the range of stability levels for sequences with
different gs.
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much thermodynamic stability and conformational rigidity can
be detrimental to function (38) (see also ref. 39). Real func-
tional fitness is not expected to always correlate with native
stability. The application of our results may also be less
straightforward if the functional form of a protein is a multimer
instead of a single-chain monomer (40). These limitations
notwithstanding, the superfunnel scenario appears to be in
general qualitative agreement with experiments. In an exten-
sive mutagenesis study of 290 single-point mutations on the
wild-type sequence of staphylococcal nuclease, only 33 lead to
relatively small thermodynamic stabilization. All of the rest are
destabilizing to various degrees (41–43). Consistent with the
ruggedness consideration above, sets of mutations that are
energetically more disruptive lead to higher probabilities of
mutant stabilization: 2y83, 11y103, and 20y104 of the muta-
tions on large hydrophobic (41), polar and uncharged (42) and
ionizable (43) amino acid residues, respectively, lead to mu-
tants more stable than the wild type.

A noteworthy finding here is that neutral net topology per se
can be an important determining factor of evolutionary pop-
ulation. In some cases, mutations on wild-type sequences are
found to be both stabilizing and function enhancing (44), which
is puzzling from an evolutionary perspective that focuses
exclusively on functional fitness (45). However, this may be
rationalizable without invoking unspecified biological com-
plexities if these mutants turn out to be mutationally unstable
themselves (i.e., have few viable neutral neighbors). Our
results show that it is possible for neutral net topology and
functional fitness (such as native stability in our models) to
have opposing evolutionary effects on population distribution.
This hypothesis should be testable by experimental mapping of
neutral net topologies of real proteins.
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